Determining crystal phase purity in c-BP through X-ray absorption spectroscopy.

نویسندگان

  • S P Huber
  • V V Medvedev
  • E Gullikson
  • B Padavala
  • J H Edgar
  • R W E van de Kruijs
  • F Bijkerk
  • D Prendergast
چکیده

We employ X-ray absorption near-edge spectroscopy at the boron K-edge and the phosphorus L2,3-edge to study the structural properties of cubic boron phosphide (c-BP) samples. The X-ray absorption spectra are modeled from first-principles within the density functional theory framework using the excited electron core-hole (XCH) approach. A simple structural model of a perfect c-BP crystal accurately reproduces the P L2,3-edge, however it fails to describe the broad and gradual onset of the B K-edge. Simulations of the spectroscopic signatures in boron 1s excitations of intrinsic point defects and the hexagonal BP crystal phase show that these additions to the structural model cannot reproduce the broad pre-edge of the experimental spectrum. Calculated formation enthalpies show that, during the growth of c-BP, it is possible that amorphous boron phases can be grown in conjunction with the desired boron phosphide crystalline phase. In combination with experimental and theoretically obtained X-ray absorption spectra of an amorphous boron structure, which have a similar broad absorption onset in the B K-edge spectrum as the cubic boron phosphide samples, we provide evidence for the presence of amorphous boron clusters in the synthesized c-BP samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of reaction parameters on crystal phase growth and optical properties of ultrasonic assisted hydro- and solvothermal synthesized sub-micrometer-sized CdS spheres

Sub-micrometer-sized CdS spheres were synthesized by hydrothermal and solvothermal reactions using Cd(NO3)2.4H2O and CH4N2S raw materials at a constant stoichiometric 1 : 2, Cd : S molar ratio. Various conditions such as solvent type (water and/or ethanol), reaction time and temperature were examined for the synthesis of the targets. The sy...

متن کامل

Influence of reaction parameters on crystal phase growth and optical properties of ultrasonic assisted hydro- and solvothermal synthesized sub-micrometer-sized CdS spheres

Sub-micrometer-sized CdS spheres were synthesized by hydrothermal and solvothermal reactions using Cd(NO3)2.4H2O and CH4N2S raw materials at a constant stoichiometric 1 : 2, Cd : S molar ratio. Various conditions such as solvent type (water and/or ethanol), reaction time and temperature were examined for the synthesis of the targets. The sy...

متن کامل

Ni2As2O7 pyrochlore nanomaterial: Solid state synthesis, crystal structure determination, crystal phase growth study and physical properties

Nanostructured Ni2As2O7 semiconductor samples were synthesized by a solid state method among As2O3 and Ni(NO3)2.6H2O raw materials at 650 °C (S1) and 750 °C (S2) as reaction temperatures. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique and F...

متن کامل

Ni2As2O7 pyrochlore nanomaterial: Solid state synthesis, crystal structure determination, crystal phase growth study and physical properties

Nanostructured Ni2As2O7 semiconductor samples were synthesized by a solid state method among As2O3 and Ni(NO3)2.6H2O raw materials at 650 °C (S1) and 750 °C (S2) as reaction temperatures. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique and F...

متن کامل

Broad distribution of crystal - field environments for Nd 3 + in calcite

Calcite crystals were grown from solution with single-crystal dimensions up to 3 mm and doped up to 0.1 at% with Nd ions. Phase purity was verified by powder X-ray diffraction. The concentration of Nd was measured by energy-dispersive spectrometry and Rutherford backscattering spectrometry. Micro X-ray fluorescence mapping of the calcite grains indicates uniform Nd distribution in as-grown crys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 2017